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The contents of this paper will consider the magic hourglass of squares. This
mathematical object is composed of 7 squares arranged in a 3x3 grid such that
the entries of the top row, bottom row, middle column, and both diagonals each
sum to the same total. It is not currently known if one exists. If one did, it
would look like this A2 B2 C2

— E2 —
G2 H2 I2


Equivalently this means for A,B,C,E,G,H, I ∈ Z the following 5 sums are

equal to the same total, say T

A2 + B2 + C2 = T

G2 + H2 + I2 = T

A2 + E2 + I2 = T

B2 + E2 + H2 = T

C2 + E2 + G2 = T

A potential method of construction using the Gaussian integers will be pre-
sented first.

Theorem 1. If there exists 3 distinct Gaussian integers z1, z2, z3 ∈ Z[i]−R
such that

1) ||z1|| = ||z2|| = ||z3||

2) z41 + z42 + z43 ∈ R

then there exists a magic hourglass of distinct squares of integers. Specifically,
the 5 aforementioned sums will be satisfied by choosing

A = Im[(1 + i)z21 ] B = Im[(1 + i)z22 ] C = Im[(1 + i)z23 ]

E = ||z1||2 = ||z2||2 = ||z3||2

G = Re[(1 + i)z23 ] H = Re[(1 + i)z22 ] I = Re[(1 + i)z21 ]
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Proof.
Lemma 1.1. 2(||z||2)2 = Re[(1 + i)z2]2 + Im[(1 + i)z2]2

For z ∈ Z[i]
2(||z||2)2

||

||1 + i||2 · ||z||4

||

||(1 + i)z2||2

||

Re[(1 + i)z2]2 + Im[(1 + i)z2]2

Now substituting z1,z2, and z3 for z respectively gives the equations

A2 + I2 = 2E2 (1)

B2 + H2 = 2E2 (2)

C2 + G2 = 2E2 (3)

Lemma 1.2. 2Im[z4] = Im[(1 + i)z2]2 − Re[(1 + i)z2]2

For z ∈ Z[i]
2Im[z4]

||

−Re[z4 · 2i]

||

−Re[(z2(1 + i))2]

||

Im[(1 + i)z2]2 − Re[(1 + i)z2]2

Again substituting z1,z2, and z3 for z respectively gives the equations

A2 − I2 = 2Im[z4] (4)

B2 −H2 = 2Im[z4] (5)

C2 −G2 = 2Im[z4] (6)

These equalities are now made use of as follows

z41 + z42 + z43 ∈ R ⇔ Im[z41 ] + Im[z42 ] + Im[z43 ] = 0

m

A2 − I2 + B2 −H2 + C2 −G2 = 0 (7)
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Adding equations (1), (2), and (3) to equation (7) yields the following

2A2 + 2B2 + 2C2 = 6E2

m

A2 + B2 + C2 = 3E2

Similarly, subtraction equations (1), (2), and (3) from equation (7) yields the
following

−2G2 − 2H2 − 2I2 = −6E2

m

G2 + H2 + I2 = 3E2

Finally adding E2 to each of equations (1), (2), and (3) respectively yields

A2 + E2 + I2 = 3E2

B2 + E2 + H2 = 3E2

C2 + E2 + G2 = 3E2

The 5 sums of the magic hourglass have been shown to be equal to the same
total – namely T = 3E2 – and thus, the magic hourglass of squares has been
(hypothetically) constructed.

Unfortunately the converse of Theorem 1 is too difficult to prove. That is,
that the existence of a magic hourglass of squares implies the existence of the
aforementioned Gaussian integers: z1, z2, and z3. Although such difficulty is
perceived only from the inability of the author to find such a proof. A weaker
result will be shown here.

Theorem 2. If there exists a magic hourglass of distinct squares then there
exists 3 distinct complex numbers

z1, z2, z3 ∈ {z
√
n : z ∈ Z[i]− R, n ∈ N}

such that
1) ||z1|| = ||z2|| = ||z3||

2) z41 + z42 + z43 ∈ R

Proof.
Lemma 2.1. For any magic hourglass having T as its total and E2 as its

middle element: T = 3E2
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3T

||

(A2 + E2 + I2) + (B2 + E2 + H2) + (C2 + E2 + G2)

||

(A2 + B2 + C2) + (E2 + E2 + E2) + (G2 + H2 + I2)

||

2T + 3E2

From which it follows that T = 3E2

Such a result reveals there are 3 arithmetic sequences of squares in any magic
hourglass of squares

A2 + E2 + I2 = 3E2 ⇔ A2 − E2 = E2 − I2

B2 + E2 + H2 = 3E2 ⇔ B2 − E2 = E2 −H2

C2 + E2 + G2 = 3E2 ⇔ C2 − E2 = E2 −G2

Lemma 2.2. All arithmetic sequences of squares are parametrized by a
corresponding Gaussian integer and a real integer.

Let r2, s2, t2 form an arithmetic sequence such that

r2 − s2 = s2 − t2

Because 2 · s · s is the sum of two squares (i.e. r2 + t2 = 2s2) it follows that
s itself is the sum of two squares, say s = m2 + n2

The Gaussian integer z ∈ Z[i] is now introduced. Let z = m + ni so that

s = ||z||2 = m2 + n2

Next, the values of r and t are found in terms of m and n as follows

r2 + t2 = ||2s2||2

||

||1 + i||2 · ||(m + ni)2||2

||

||(1 + i)(m2 − n2 + 2mni)||2

||

(m2 − 2mn− n2)2 + (m2 + 2mn− n2)2
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In this way, an arithmetic sequence of squares can be parametrized with any
integer m and n

r = m2 − 2mn− n2 s = m2 + n2 t = m2 + 2mn− n2

Although this is not yet the full solution. The full solution is reached by
multiplying r, s, and t by a positive integer constant, say l

r = l(m2 − 2mn− n2) s = l(m2 + n2) t = l(m2 + 2mn− n2)

Note that multiply r, s, and t by l has the same effect as multiplying m
and n by

√
l. Thus we say that z

√
l is the corresponding parametrization of the

sequence r2, s2, and t2. More specifically

r = l · Re[(1 + i)z2] s = l · ||z||2 t = l · Im[(1 + i)z2]

Because there are 3 arithmetic sequences of squares in a magic hourglass of
squares, we may now state using Lemma 2.2 that there exists n1, n2, n3 ∈ N
and x1, x2, x3 ∈ Z[i]− R such that

A = n1Im[(1 + i)x2
1] B = n2Im[(1 + i)x2

2] C = n3Im[(1 + i)x2
3]

E = n1||x1||2 = n2||x2||2 = n3||x3||2

G = n3Re[(1 + i)x2
3] H = n2Re[(1 + i)x2

2] I = n1Re[(1 + i)x2
1]

Equivalently, there exists

z1, z2, z3 ∈ {z
√
n : z ∈ Z[i]− R, n ∈ N}

such that
z1 = x1

√
n1 z2 = x2

√
n2 z3 = x3

√
n3

Finally, we show that z1, z2, and z3 have the same norm.

E = n1||x1||2 = n2||x2||2 = n3||x3||2

|| || ||

||x1
√
n1||2 = ||x2

√
n2||2 = ||x3

√
n3||2

|| || ||

||z1||2 = ||z2||2 = ||z3||2

⇓

||z1|| = ||z2|| = ||z3||

And Theorem 2 has been proven.
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