Magic Square of Squares

Adrian Suter

November 15, 2017

1 Introduction

As written by Terry Moriarty published on http://magicsqr.byethost8.com/introMSoS.htm we know that a 3×3 magic square of squares can be represented as

$j^{2}\left(p^{2}-2 p q-q^{2}\right)^{2}$	$k^{2}\left(m^{2}+2 m n-n^{2}\right)^{2}$	$l^{2}\left(r^{2}+s^{2}\right)^{2}$
$l^{2}\left(r^{2}+2 r s-s^{2}\right)^{2}$	$j^{2}\left(p^{2}+q^{2}\right)^{2}$	$k^{2}\left(m^{2}-2 m n-n^{2}\right)^{2}$
$k^{2}\left(m^{2}+n^{2}\right)^{2}$	$l^{2}\left(r^{2}-2 r s-s^{2}\right)^{2}$	$j^{2}\left(p^{2}+2 p q-q^{2}\right)^{2}$

where $m>n>0, p>q>0, r>s>0,\{j, k, l\}>0$.
We deduce the following two simple constraints.

Constraint (i) The following three formulaes need to be equal

$$
\begin{array}{r}
4 k^{2} m n\left(m^{2}-n^{2}\right) \\
4 j^{2} p q\left(p^{2}-q^{2}\right) \\
4 l^{2} r s\left(r^{2}-s^{2}\right) \tag{3}
\end{array}
$$

Constraint (ii) The following two formulaes need to be equal

$$
\begin{align*}
& j^{2}\left(p^{2}-2 p q-q^{2}\right)^{2}-k^{2}\left(m^{2}+2 m n-n^{2}\right)^{2} \tag{4}\\
& l^{2}\left(r^{2}-2 r s-s^{2}\right)^{2}-j^{2}\left(p^{2}+2 p q-q^{2}\right)^{2} \tag{5}
\end{align*}
$$

Terry Moriarty claims that any solution simultaneously satisfying these two constraints would give us a magic square of squares.

Let us define

$$
\begin{align*}
a & =p^{2}-2 p q-q^{2} \tag{6}\\
b & =m^{2}+2 m n-n^{2} \tag{7}\\
c & =r^{2}-2 r s-s^{2} \tag{8}\\
d & =p^{2}+2 p q-q^{2} \tag{9}
\end{align*}
$$

Then constraint (ii) can be rewritten as

$$
\begin{equation*}
j^{2} \cdot a^{2}-k^{2} \cdot b^{2}=l^{2} \cdot c^{2}-j^{2} \cdot d^{2} \tag{10}
\end{equation*}
$$

2 A possible solution

Using a small program, I have found the following possible solution.

Let there be

$$
\begin{array}{r}
k=1, m=15, n=3 \\
j=2, p=9, q=6 \\
l=9, r=5, s=1
\end{array}
$$

Then formulae (1) becomes

$$
\begin{aligned}
4 k^{2} m n\left(m^{2}-n^{2}\right) & =4 \cdot 1^{2} \cdot 15 \cdot 3 \cdot\left(15^{2}-3^{2}\right) \\
& =180 \cdot(225-9) \\
& =38880
\end{aligned}
$$

Formulae (2) becomes

$$
\begin{aligned}
4 j^{2} p q\left(p^{2}-q^{2}\right) & =4 \cdot 2^{2} \cdot 9 \cdot 6 \cdot\left(9^{2}-6^{2}\right) \\
& =864 \cdot(81-36) \\
& =38880
\end{aligned}
$$

And formulae (3) becomes

$$
\begin{aligned}
4 l^{2} r s\left(r^{2}-s^{2}\right) & =4 \cdot 9^{2} \cdot 5 \cdot 1 \cdot\left(5^{2}-1^{2}\right) \\
& =1620 \cdot(25-1) \\
& =38880
\end{aligned}
$$

Therefore constraint (i) is satisfied.
Now we can verify the constraint (ii). To do this, let us first calculate a, b, c and d as defined in equations (6)-(9).

$$
\begin{aligned}
a & =p^{2}-2 p q-q^{2}=9^{2}-2 \cdot 9 \cdot 6-6^{2}=-63 \\
b & =m^{2}+2 m n-n^{2}=15^{2}+2 \cdot 15 \cdot 3-3^{2}=306 \\
c & =r^{2}-2 r s-s^{2}=5^{2}-2 \cdot 5 \cdot 1-1^{2}=14 \\
d & =p^{2}+2 p q-q^{2}=9^{2}+2 \cdot 9 \cdot 6-6^{2}=153
\end{aligned}
$$

Formulae (4) becomes

$$
\begin{aligned}
j^{2} \cdot a^{2}-k^{2} \cdot b^{2} & =2^{2} \cdot(-63)^{2}-1^{2} \cdot 306^{2} \\
& =-77760
\end{aligned}
$$

Formulae (5) becomes

$$
\begin{aligned}
l^{2} \cdot c^{2}-j^{2} \cdot d^{2} & =9^{2} \cdot 14^{2}-2^{2} \cdot 153^{2} \\
& =-77760
\end{aligned}
$$

So constraint (ii) is satisfied too. Heureka - we have a magic square of squares.

3 The problem

The magic square of squares with the given solution is as follows.

126^{2}	306^{2}	234^{2}
306^{2}	234^{2}	126^{2}
234^{2}	126^{2}	306^{2}

It is indeed a magic square of squares, but unfortunately the numbers are not unique. Hence I guess we need to adapt the constraints.

