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“Martin LaBar, in The College Mathematics Journal 
[January 1984, p.69], asked if a 3x3 magic square exists with 
nine distinct square numbers. (…) Neither such a square nor 
a proof of impossibility has been found. (…) I here offer $100 
to the first person to construct such a square. If it exists, its 
numbers are sure to be monstrously large.” 

Martin Gardner, 1996 
 
 
Today, eight years after this quotation, nobody has succeeded in winning the $100 of this 
Gardner’s challenge. 
However, it is possible to construct a 3x3 square with nine square integers and only one bad 
magic sum. The smallest example is the following square, first found independently by Lee 
Sallows and Michael Schweitzer. All the rows and columns, but only one of the two 
diagonals, have the same magic sum. 
 

127² 46² 58² 
2² 113² 94² 

74² 82² 97² 
(fig. 1) 

 
Our problem, here, is to get the maximum number of square integers in a fully magic square: 
the eight lines of the squares of our study will always have the same magic sum. 
 
 
Six square integers 
Andrew Bremner, Department of Mathematics, Arizona State University, demonstrated in 
2001 that all the sixteen possible configurations of magic squares including six square 
integers are possible. 
 

x x x    x x  x x x    x             x        x    x x 
x x    x   x         x x x  x x x  x x x  x x x    x x 
x      x x    x x x  x   x  x x x  x x    x   x  x   x 

6.I  6.II  6.III  6.IV  6.V  6.VI  6.VII  6.VIII 
                               
    x      x      x    x      x x  x   x    x x  x   x 
x   x  x x x  x x x  x   x  x x      x x  x          x 
x x x    x x  x x    x x x  x   x  x   x  x x x  x x x 

6.IX  6.X  6.XI  6.XII  6.XIII  6.XIV  6.XV  6.XVI 
 (fig. 2) 
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Numerous examples with six square integers are easy to find, for each configuration. For 
example, here is the “smallest” possible magic square with six square integers, “smallest” 
meaning that it is using the smallest magic sum. This example belongs to the Bremner’s 
configuration 6.XV. The central cell is equal to 145 = 5·29 
 

265 1² 13² 
7² 145 241 

11² 17² 5² 
(fig. 3) 

 
Here are the two smallest examples using a square integer in the central cell. These examples 
belong to the configurations 6.VII and 6.XIV. There is an easy correspondence between 
squares of these two configurations, as mentioned by Bremner: that’s why these two different 
squares are in fact very similar, using the same square integers, having one identical diagonal. 
 

889 697 17²  5² 1561 17² 
5² 25² 35²  889 25² 19² 

31² 553 19²  31² -311 35² 
(fig. 4) 

 
And when two magic squares 3x3 have the same central cell, then they have the same magic 
sum. The magic sum of a magic square 3x3 always equals three times the central cell. 
 
 
Seven square integers 
Up to symmetry (rotation and reflection), there are eight ways of selecting seven entries from 
a 3x3 square. These are as follows: 
 

x x x  x x x  x x x  x x x  x x x  x x    x x x  x x x 
  x    x x    x x x    x x  x x x  x x x  x   x  x   x 
x x x  x   x  x      x x      x      x x  x   x  x x   

7.I  7.II  7.III  7.IV  7.V  7.VI  7.VII  7.VIII 
(fig. 5) 

  
Two results are already known about these configurations: 

• Duncan Buell, Department of Computer Science and Engineering, University of South 
Carolina, studied in 1998 the configuration 7.I, that he called the “magic hourglass”, 
and computed that there is no solution with a central cell < 25·1024. A direct 
consequence: if a magic square of squares exists, then its central cell is bigger than 
25·1024. Martin Gardner was right saying that ”if it exists, its numbers are sure to be 
monstrously large.” 

• Lee Sallows and Andrew Bremner had separately and previously found the only 
known example having seven square integers, excluding its symmetries, rotations and 
k² multiples. This example is of configuration 7.IV. The central cell is equal to 425² = 
(5²·17)² = 180,625. 

 
373² 289² 565² 

360721 425² 23² 
205² 527² 222121 

(fig. 6) 
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The goal of our study is to try to find at least another example with seven square integers. 
Of course excluding rotations, symmetries, or k² multiples of the figure 6. 
 
 
Eight square integers 
Up to symmetry (rotation and reflection), there are three ways of selecting eight entries from a 
3x3 square. These are as follows: 
 

x x x  x x x  x x x 
x x x  x x x  x   x 
x   x  x x    x x x 

8.I  8.II  8.III 
(fig. 7) 

 
Currently, no example with eight square integers is known (and no example with nine square 
integers, Martin Gardner’s initial challenge). 
 
 
Some words about the method used 
A line going through the central cell C, and having two square integers around the central cell, 
is an integer solution of the equation: 

x² + y² = 2C. 
Because 4k+3 prime integers cannot be sums of two square integers, we study only magic 
squares with central cells which are products of 4k+1 prime integers. All the 7.x and 8.x 
configurations need two, three or four such lines through the centre, meaning at least (as a 
strict minimum) two, three or four solutions of the above equation. 
Knowing that a 4k+1 prime number has only one way to be a sum of two square numbers, 
knowing that the product (a² + b²)(c² + d²) gives two different ways to be a sum of two square 
numbers, 

• (ad + bc)² + (ac – bd)² 
• (ad – bc)² + (ac + bd)² 

and using the fact that  
• 2(a² + b²) = (a + b)² + (a – b)² 

it is possible to demonstrate that: 
 

D1. For configurations 7.I to 7.VI, and 8.I to 8.II where the central cell C is a 
square C=c². 
If c has n distinct factors which are 4k+1 prime integers, then there are: 

(3n – 1)/2 different solutions of x² + y² = 2c², with x<y. 
 
D2. For configurations 7.VII, 7.VIII, 8.III where the central cell C is not a square. 
If C has n distinct factors which are 4k+1 prime integers, then there are: 

2(n-1) different solutions of x² + y² = 2C, with x<y. 
 
Even if distinct factors give the above maximum number of solutions, it is interesting for 
variety purpose, to allow factors in common in the factorisation of the central cell: the only 
known example with 7 squares (fig.6) has one time the factor 17, but twice the factor 5. 
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Research with a square integer in the central cell 
We first limit our study to magic squares having a square integer in the central cell: all the 
configurations from 7.I to 7.VI, and 8.I, 8.II. 
Disappointing result, done by computer: the magic square of Fig 6 is the ONLY magic 
square (excluding its rotations, symmetries, and k² multiples) with more than six square 
integers, if the central cell is one of the following square integer types: 
 

a) (5i
·p1·p2)² with 5 ≤ pj < 40,000 (→ central cell < 1.60x1021) 

b) (5i
·p1·p2·p3)² with 5 ≤ pj < 1,500 (→ central cell < 6.92x1021) 

c) (5i
·p1·p2·p3·p4)² with 5 ≤ pj < 300 (→ central cell < 3.39x1022) 

d) (5i
·p1·p2·p3·p4·p5)² with 5 ≤ pj ≤ 101 (→ central cell < 6.90x1022) 

e) (5i
·p1·p2·p3·p4·p5·p6)² with 5 ≤ pj ≤ 53 (→ central cell < 3.07x1023) 

f) (5i
·p1·p2·p3·p4·p5·p6·p7)² with 5 ≤ pj ≤ 37 (→ central cell < 5.63x1024) 

g) (5i
·p1·p2·p3·p4·p5·p6·p7·p8)² with 5 ≤ pj ≤ 29 (→ central cell < 1.56x1026) 

h) (5i
·p1·p2·p3·p4·p5·p6·p7·p8·p9·p10)² with 5 ≤ pj ≤ 17 (→ central cell < 2.54x1027) 

i) (5i
·p1·p2·p3)² with 
5 ≤ p1 ≤ 101 
5 ≤ p2 < 1,000 
5 ≤ p3 < 10,000 (→ central cell < 6.30x1020) 

j) (5i
·p1·p2·p3·p4)² with 
5 ≤ p1 ≤ 101 
5 ≤ p2 < 150 
5 ≤ p3 < 300 
5 ≤ p4 < 1,000 (→ central cell < 1.21x1022) 

k) (5i
·13·17·29·37·p5·p6)² with 
5 ≤ p5 ≤ 41 
5 ≤ p6 < 1,000 (→ central cell < 5.87x1022) 

l) (5i
0·(p1)

i
1·(p2)

i
2·(p3)

i
3)² with 5 ≤ pj < 200 (→ central cell < 2.14x1030) 

m) (p1·p2·p3)² with 5 ≤ pj < 3,000 (→ central cell < 6.85x1020) 
 
0 ≤ i ≤ 2, and pj being a 4k+1 prime number {5, 13, 17, 29, 37, 41, 53, …} 
 
From a) to k), I have in fact analyzed only (5²·p1· …)². And for l), only (5²·p1²·p2²·p3²)². 
Because a magic square with x square entries keeps its x square entries when all the cells are 
multiplied by the same square factor, our results includes automatically all the submultiples of 
the square root of the central cell: if there is no magic square with central cells (5²·p1· …)², 
then there is also no magic square with central cells (5·p1· …)² and (p1· …)² in the studied 
intervals. And also, for example, the type a) includes automatically the simplest case (5i

·p1)². 
 
 
Research with a non-square integer in the central cell 
We now study the magic squares that do not have a square integer in the central cell: 
configurations 7.VII, 7.VIII, and 8.III. 
Again a disappointing result, done by computer: there is NO magic square with more than 
six square integers, if the central cell is one of the following integer types: 
 

n) (5i
·p1) with 5 ≤ pj < 40,000 (→ central cell < 1.25x108) 

o) (5i
·p1·p2) with 5 ≤ pj < 40,000 (→ central cell < 5x1012) 

p) (5i
·p1·p2·p3) with 5 ≤ pj < 4,000 (→ central cell < 1.98x1014) 

q) (5i
·p1·p2·p3·p4) with 5 ≤ pj < 800 (→ central cell < 1.26x1015) 
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r) (5i
·p1·p2·p3·p4·p5) with 5 ≤ pj < 300 (→ central cell < 6.75x1015) 

s) (5i
·p1·p2·p3·p4·p5·p6) with 5 ≤ pj < 150 (→ central cell < 3.42x1016) 

t) (5i
·p1·p2·p3·p4·p5·p6·p7) with 5 ≤ pj ≤ 101 (→ central cell < 3.35x1017) 

u) (5i
·p1·p2·p3) with 
5 ≤ p1 < 150 
5 ≤ p2 < 1,500 
5 ≤ p3 < 15,000 (→ central cell < 1.04x1013) 

v) (5i
·p1·p2·p3·p4) with 
5 ≤ p1 < 150 
5 ≤ p2 < 250 
5 ≤ p3 < 500 
5 ≤ p4 < 1,500 (→ central cell < 7.72x1013) 

w) (5i
·13·17·29·37·p5·p6) with 
5 ≤ p5 ≤ 101 
5 ≤ p6 < 1,500 (→ central cell < 1.12x1014) 

x) (p1·p2·p3) with 5 ≤ pj < 15,000 (→ central cell < 3.35 x1012) 
 
0 ≤ i ≤ 5, and pj being a 4k+1 prime number {5, 13, 17, 29, 37, 41, 53, …} 
 
I have in fact analyzed only (54

·p1· …) and (55·p1· …) integers. 
About (54

·p1· …): because the square properties of a magic square are not modified by a 
square factor like 5², if there is no magic square with central cell (54·p1· …), then there is also 
no magic square with central cells (5²·p1· …) and (p1· …) in the studied intervals. 
About (55

·p1· …): because the square properties of a magic square are not modified by a 
square factor like 5², if there is no magic square with central cell (55·p1· …), then there is also 
no magic square with central cells (53

·p1· …) and (5·p1· …) in the studied intervals. 
 
 
Conclusion 
Fig 6 shows, by the example, that it is possible to get seven square entries in a magic square. 
It is very strange (and really disappointing…) to have been unable to find at least another 
example of such a square in our various and wide range of central cells. 
It is so difficult to find at least another example with “only” seven squares that I think that a 
complete square of squares -with nine square integers- cannot exist. But it’s only a feeling, 
the eventual proof of the impossibility has not yet been found… 
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