Magic Square Of Squares Search

landon rabern

October 16, 2007

We have determined that, for the following central squares, there are no 3×3 magic squares with distinct entries with at least 7 squares (besides symmetries and k^{2} multiples of the known one). All primes factors considered are of the form $p \equiv 1(4)$. Note if there is no such magic square with central square x^{2} then no square factor of x^{2} is the central square of such a square (e.g. since $(13 * 17)^{100}$ is not the central square of such a square, neither is $13^{2} 17^{80}$ or $13^{92} 17^{40}$, etc.).

The search continues. Software (including source) for performing such as search is available for download (get it at http://landon314.brinkster.net/MagicSearcher.msi - it is currently Windows-only since Mono does not support mixed mode assemblies) and a distributed computing project is in the works. The actual computational engine has been partitioned out into a .NET Assembly called MagicLibrary that can be easily used in other search applications. Please improve the code and send it back!

All Configurations

Two Distinct Prime Factors

$\left(p_{1} p_{2}\right)^{4}$ with $13 \leq p_{1}<p_{2} \leq 99989$.
$\left(p_{1} p_{2}\right)^{8}$ with $5 \leq p_{1} \leq 149$ and $5 \leq p_{2} \leq 10,000,000$
$\left(p_{1} p_{2}\right)^{10}$ with $13 \leq p_{1}<p_{2} \leq 9949$.
$\left(p_{1} p_{2}\right)^{14}$ with $13 \leq p_{1}<p_{2} \leq 1993$.
$\left(p_{1} p_{2}\right)^{24}$ with $13 \leq p_{1}<p_{2} \leq 977$.
$\left(p_{1} p_{2}\right)^{50}$ with $13 \leq p_{1}<p_{2} \leq 89$.
$\left(p_{1} p_{2}\right)^{100}$ with $13 \leq p_{1}<p_{2} \leq 17$.

Three Distinct Prime Factors

$\left(p_{1} p_{2} p_{3}\right)^{4}$ with $13 \leq p_{1}<p_{2}<p_{3} \leq 4973$.
$\left(p_{1} p_{2} p_{3}\right)^{6}$ with $13 \leq p_{1}<p_{2}<p_{3} \leq 1993$.
$\left(5 p_{2} p_{3}\right)^{8}$ with $13 \leq p_{2} \leq 61$ and $5 \leq p_{3} \leq 100,000$
$\left(p_{1} p_{2} p_{3}\right)^{10}$ with $13 \leq p_{1}<p_{2}<p_{3} \leq 457$.
$\left(p_{1} p_{2} p_{3}\right)^{16}$ with $13 \leq p_{1}<p_{2}<p_{3} \leq 89$.

Four Distinct Prime Factors

$\left(p_{1} p_{2} p_{3} p_{4}\right)^{4}$ with $13 \leq p_{1}<p_{2}<p_{3}<p_{4} \leq 457$.
$\left(p_{1} p_{2} p_{3} p_{4}\right)^{6}$ with $13 \leq p_{1}<p_{2}<p_{3}<p_{4} \leq 89$.

Five Distinct Prime Factors

$\left(p_{1} p_{2} p_{3} p_{4} p_{5}\right)^{2}$ with $13 \leq p_{1}<p_{2}<p_{3}<p_{4}<p_{5} \leq 457$.
$\left(p_{1} p_{2} p_{3} p_{4} p_{5}\right)^{4}$ with $13 \leq p_{1}<p_{2}<p_{3}<p_{4}<p_{5} \leq 89$.

Six Distinct Prime Factors

$\left(p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}\right)^{2}$ with $5 \leq p_{1}<p_{2}<p_{3}<p_{4}<p_{5}<p_{6} \leq 89$.

Seven Distinct Prime Factors

$\left(p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}\right)^{2}$ with $5 \leq p_{1}<p_{2}<p_{3}<p_{4}<p_{5}<p_{6}<p_{7} \leq 53$.

Hourglass Configuration

Three Distinct Prime Factors
$\left(5 p_{2} p_{3}\right)^{8}$ with $13 \leq p_{2} \leq 113$ and $5 \leq p_{3} \leq 10,000,000$

