
Introduction 
 

The main objective of this note is to describe a connection between multimagic series and certain 

multivariate polynomials, and to show how these polynomials can be used to compute the number 

of multimagic series of various types.  Multimagic series appear in the context of multimagic squares, 

cubes, and so on.  Christian Boyer’s excellent website http://www.multimagie.com contains a lot of 

interesting information about the subject in general (including many references), and has two pages 

about multimagic series for squares[1] and cubes[2]. 

This note starts by setting up a general framework which can be used to attack many similar 

combinatorial problems.  After describing the connection with multivariate polynomials, we show 

how these polynomials can be used to compute the number of multimagic series of various types by 

computing the product of a series of simple binomials, reducing the result obtained after each 

multiplication by dropping irrelevant terms.  The final polynomial will always contain only one 

monomial, and its coefficient provides the final result.  Some new exact results for bimagic series are 

included, as well as comparisons with the best available estimates. 

This note follows the commonly used convention that the value of a sum over an empty set is 0, and 

that the value of a product over an empty set is 1. 

General framework 
 

Before discussing the general case covering multimagic series, let’s start with another example: the 

well-known binomial identity 

(𝑥 + 𝑦)𝑛 =∑(
𝑛
𝑘
)𝑥𝑘𝑦𝑛−𝑘

𝑛

𝑘=0

 

The coefficient of the general term in the summation is a binomial coefficient, and represents the 

number of distinct subsets of 𝑘 elements that can be chosen from a set of 𝑛 elements (of course if 

𝑘 < 0 or 𝑘 > 𝑛 no such subsets exist, and the binomial coefficient is zero).  In case you don’t 

immediately see why this is true, check out the sections about the combinatorial interpretation and 

proof in http://en.wikipedia.org/wiki/Binomial_theorem (example and general case).  The intuitive 

explanation is as follows (I just quote from the Wikipedia page): “if we write (𝑥 + 𝑦)𝑛 as a product 

(𝑥 + 𝑦)(𝑥 + 𝑦)(𝑥 + 𝑦)… (𝑥 + 𝑦), 

then, according to the distributive law, there will be one term in the expansion for each choice of 

either 𝑥 or 𝑦 from each of the binomials of the product. For example, there will only be one term 𝑥𝑛, 

corresponding to choosing 𝑥 from each binomial.  However, there will be several terms of the form 

𝑥𝑛−2𝑦2, one for each way of choosing exactly two binomials to contribute a 𝑦.  Therefore, after 

combining like terms, the coefficient of 𝑥𝑛−2𝑦2 will be equal to the number of ways to choose 

exactly 2 elements from an 𝑛-element set.”  Of course we can replace 𝑦 by 1 to obtain 

http://www.multimagie.com/
http://en.wikipedia.org/wiki/Binomial_theorem
http://en.wikipedia.org/wiki/Product_(mathematics)
http://en.wikipedia.org/wiki/Distributive_property
http://en.wikipedia.org/wiki/Like_terms


(1 + 𝑥)𝑛 =∑(
𝑛
𝑘
) 𝑥𝑘

𝑛

𝑘=0

 

This idea can be taken one step further by replacing the term 𝑥 in the binomials by powers of 𝑥 as 

follows: 

∏(1 + 𝑥𝑓(𝑖))

𝑛

𝑖=1

=∑𝑐𝑘
(𝑛)
𝑥𝑘

𝑛

𝑘=0

 

Using the same line of reasoning as above, it can be shown that the coefficient 𝑐𝑘
(𝑛)

 is equal to the 

number of subsets 𝑇 that can be chosen from the set 𝑆 = {1,2,… , 𝑛} such that ∑ 𝑓(𝑖)𝑖∈𝑇 = 𝑘. 

Note that if we take 𝑓(𝑖) = 1 for all 𝑖 ∈ 𝑆, then ∑ 𝑓(𝑖)𝑖∈𝑇  is the number of elements of 𝑇, so we have 

𝑐𝑘
(𝑛)

= (
𝑛
𝑘
) 

and recovered the form of the binomial identity with 𝑦 = 1. 

If we need to satisfy several equations simultaneously we have to introduce more variables.  For 

example, if we write 

∏(𝑥𝑦𝑖 + 𝑥𝑧𝑖 + 𝑦𝑖𝑧𝑖)

𝑛

𝑖=1

= ∑ 𝑐𝑢,𝑣,𝑤𝑥
𝑢𝑦𝑣𝑧𝑤

𝑢,𝑣,𝑤

 

then 𝑐𝑢,𝑣,𝑤 is equal to the number of ways to color 𝑛 balls numbered from 1 to 𝑛 using three colors 

(say red, green and blue), such that the number of balls which are not blue is equal to 𝑢, the sum of 

the numbers on the balls which are not green is equal to 𝑣, and the sum of the numbers on the balls 

which are not red is equal to 𝑤.  To see why this is true, assume that the factor 𝑖 corresponds to the 

ball with number 𝑖, and choose the first term 𝑥𝑦𝑖 if this ball is red, the second term 𝑥𝑧𝑖 if this ball is 

green, and the third term 𝑦𝑖𝑧𝑖 if this ball is blue. 

We will use multi-index notation to avoid lengthy expressions: if the variables are indexed from 1 to 

𝑚,  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚), and 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑚) ∈ ℤ
𝑚, we use the following abbreviated notation: 

𝑐𝑢𝑥
𝑢 = 𝑐𝑢1,𝑢2,…,𝑢𝑚𝑥1

𝑢1𝑥2
𝑢2 …𝑥𝑚

𝑢𝑚 

Note that we can still write 𝑥𝑢𝑥𝑣 = 𝑥𝑢+𝑣, now for all 𝑢, 𝑣 ∈ ℤ𝑚.  A nice thing about this notation is 

that it helps us to reason about multivariate polynomials as if they are just polynomials in one 

variable. 

To solve enumeration problems for multimagic series, the most general form we need is a product of 

simple binomials of the form 1 + 𝑥𝑓(𝑖).  Let 𝑆 be a finite set, and let 𝑓 be a function with domain 𝑆 

and codomain ℤ𝑚.  For any subset 𝑇 ⊆ 𝑆, let 𝐹(𝑇) = ∑ 𝑓(𝑖)𝑖∈𝑇 .  Then we have 

∏(1+ 𝑥𝑓(𝑖))

𝑖∈𝑆

=∑𝑥𝐹(𝑇)

𝑇⊆𝑆

 



To see why this is true, notice as before that in order to form a single term in the summation on the 

right, one of both terms must be chosen from each factor (binomial) in the product on the left.  For 

each element 𝑖 ∈ 𝑆 choose the second term (𝑥𝑓(𝑖)) whenever 𝑖 ∈ 𝑇, and choose the first term (1) 

whenever 𝑖 ∉ 𝑇.  After multiplying the chosen terms we obtain the term 𝑥𝐹(𝑇) in the summation on 

the right. 

In this summation, like terms (terms with matching exponent vectors 𝑢) can be combined as before 

to a single term with an integer coefficient 𝑐𝑢: 

∑𝑥𝐹(𝑇)

𝑇⊆𝑆

=∑𝑐𝑢𝑥
𝑢

𝑢

 

We have shown that the number of ways to choose a subset 𝑇 of 𝑆 such that ∑ 𝑓(𝑖)𝑖∈𝑇 = 𝑢 is equal 

to (using brackets for the “coefficient of” operator) 

𝑐𝑢 = [𝑥
𝑢]∏(1 + 𝑥𝑓(𝑖))

𝑖∈𝑆

 

For example, for bimagic series for squares of order 𝑁 it is natural to take 𝑆 = {1, 2, … ,𝑁2}, 

𝑓(𝑖) = (1,𝑖, 𝑖2) and 𝑢 = (𝑁, 𝑆1, 𝑆2), where 𝑆1 and 𝑆2 are the magic sums for this type of magic series, 

hence 𝑆1 = 𝑁(𝑁
2 + 1)/2 and 𝑆2 = 𝑁(𝑁

2 + 1)(2𝑁2 + 1)/6.  Then 𝑐𝑢 is the number of bimagic 

series for squares of order 𝑁.  In this example the first variable is introduced to fix the length of the 

series, the second variable to fix its sum, and the third variable to fix its sum of squares.  The same 

result can also be found by taking 𝑆 = {0, 1, 2, … ,𝑁2 − 1}, 𝑓(𝑖) = (1, 𝑖, 𝑖(𝑖 − 1)/2) and 𝑢 =

(𝑁, 𝜎1, 𝜎2), where 𝜎1 = 𝑁(𝑁
2 − 1)/2 and 𝜎2 = 𝑁(𝑁

2 − 1)(𝑁2 − 2)/6.  We leave the proof to the 

reader. 

As in this example, it is often the case that all the exponents are nonnegative.  This does not have to 

be the case in general, and much of what follows also applies (or can easily be adapted) to the 

general case.  But in the rest of the note we are assuming that 𝑓 has codomain ℤ≥0
𝑚 . 

So far we have reformulated the problem of enumerating multimagic series, and many similar 

problems, to the computation of a certain coefficient of a certain multivariate polynomial.  There are 

several ways to compute such a coefficient.  For example, since it is relatively easy to evaluate the 

polynomial 

𝑃(𝑥) =∏(1 + 𝑥𝑓(𝑖))

𝑖∈𝑆

 

one can use the multivariate inverse discrete Fourier transform to find 𝑐𝑢 = [𝑥
𝑢]𝑃(𝑥). But, even 

considering the fact that usually the number of terms can be reduced substantially, this approach will 

quickly result in a very high number of evaluations of 𝑃(𝑥).  In this note we will use a different 

approach. 

Since 𝑆 is finite, we can assume without loss of generality that 𝑆 = {0, 1, 2,… ,𝑀 − 1} with 𝑀 = |𝑆|.  

First consider the following sequence of polynomials: 



𝑃𝑛(𝑥) = ∏(1 + 𝑥𝑓(𝑖))

𝑀−1

𝑖=𝑛

, 𝑛 = 0, 1,… ,𝑀 

We can start from the last polynomial 𝑃𝑀(𝑥) = 1, and successively compute 

𝑃𝑛(𝑥) = (1 + 𝑥
𝑓(𝑛))𝑃𝑛+1(𝑥, 𝑦, 𝑧) 

 for 𝑛 = 𝑀 − 1 down to 𝑛 = 0, writing each 𝑃𝑛(𝑥) in the form 

𝑃𝑛(𝑥) =∑𝑐𝛼
(𝑛)
𝑥𝛼

𝛼

 

where 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑚).  From the final polynomial 𝑃0(𝑥) = 𝑃(𝑥) we can extract 

𝑐𝑢
(0)
= [𝑥𝑢]𝑃0(𝑥) = [𝑥

𝑢]𝑃(𝑥) = 𝑐𝑢 

Because we are only interested in one particular coefficient 𝑐𝑢
(0)

 we don’t need to compute the 

others, obviously.  As we will see, this will allow us to drop most terms from each of the intermediate 

polynomials 𝑃𝑛(𝑥) as well.  But how do we determine which terms can safely be dropped without 

affecting the end result?  In order to answer this question, consider the “complementary” 

polynomials, defined by 

𝑄𝑛(𝑥) =∏(1 + 𝑥𝑓(𝑖))

𝑛−1

𝑖=0

, 𝑛 = 0, 1, … ,𝑀 

Then we have, for 𝑛 = 0, 1, … ,𝑀, 

𝑃𝑛(𝑥)𝑄𝑛(𝑥) = 𝑃(𝑥) 

Instead of computing the sequence of polynomials 𝑃𝑛(𝑥), we will compute a sequence of “reduced” 

polynomials 

𝑃̃𝑛(𝑥) =∑𝑐̃𝛼
(𝑛)𝑥𝛼

𝛼

 

such that the following two conditions are satisfied for 𝑛 = 0,… ,𝑀: 

𝑐̃𝛼
(𝑛) = 0 ∨ 𝑐̃𝛼

(𝑛) = 𝑐𝛼
(𝑛), for all 𝛼 

[𝑥𝑢](𝑃̃𝑛(𝑥)𝑄𝑛(𝑥)) = [𝑥
𝑢](𝑃𝑛(𝑥)𝑄𝑛(𝑥)) = 𝑐𝑢 

If we also write 𝑄𝑛(𝑥) as a sum, 

𝑄𝑛(𝑥, 𝑦, 𝑧) =∑𝑑𝛼
(𝑛)
𝑥𝛼

𝛼

 

then the second condition can be expressed as 

∑𝑐̃𝛼
(𝑛)

𝛼

𝑑𝑢−𝛼
(𝑛)

=∑𝑐𝛼
(𝑛)

𝛼

𝑑𝑢−𝛼
(𝑛)

= 𝑐𝑢 



Therefore, if we know that 𝑑𝑢−𝛼
(𝑛)

= 0, we can take 𝑐̃𝛼
(𝑛)

= 0 (i.e., drop the term) without violating the 

two conditions.  For example, because 𝑄𝑛(𝑥) does not have any terms with negative exponents, we 

can take 𝑐̃𝛼
(𝑛)

= 0 whenever 𝑢 − 𝛼 ∉ ℤ≥0
𝑚.  But we’ll see that more terms can be dropped. 

Of course we don’t want to compute 𝑄𝑛(𝑥) from its definition to find out which coefficients are 

equal to zero, and which ones are not.  But it is relatively easy to compute bounds for the exponents 

in the nonzero terms appearing in 𝑄𝑛(𝑥). 

Before explaining how this can be done, we introduce some definitions.  We start by rewriting 𝑄𝑛(𝑥) 

as a polynomial in the first variable 𝑥1: 

𝑄𝑛(𝑥) =∑𝑑𝑖
(𝑛)(𝑥) 𝑥1

𝑖

𝑖

 

where each coefficient 𝑑𝑖
(𝑛)(𝑥) is a polynomial that does not contain the variable 𝑥1.  Continuing in 

the same way we can write: 

𝑑𝑖
(𝑛)(𝑥) =∑𝑑𝑖,𝑗

(𝑛)(𝑥) 𝑥2
𝑗

𝑗

;  𝑑𝑖,𝑗
(𝑛)(𝑥) =∑𝑑𝑖,𝑗,𝑘

(𝑛) (𝑥)𝑥3
𝑘

𝑘

; … 

where each coefficient 𝑑𝑖,𝑗
(𝑛)(𝑥) is a polynomial that does not contain the variables 𝑥1 and 𝑥2, each 

coefficient 𝑑𝑖,𝑗,𝑘
(𝑛) (𝑥) is a polynomial that does not contain the variables 𝑥1, 𝑥2 and 𝑥3, and so on.  Let 

𝐿(𝑛) and 𝑀(𝑛) be the minimal and the maximal value of 𝑖 such that 𝑑𝑖
(𝑛)(𝑥) ≠ 0.  Similary, for all 𝑖 

such that 𝐿(𝑛) ≤ 𝑖 ≤ 𝑀(𝑛), let 𝐿𝑖
(𝑛)

 and 𝑀𝑖
(𝑛)

 be the minimal and the maximal value of 𝑗 such that 

𝑑𝑖,𝑗
(𝑛)(𝑥) ≠ 0.  Continuing in the same way, for all 𝑖 and 𝑗 such that 𝐿(𝑛) ≤ 𝑖 ≤ 𝑀(𝑛) and 𝐿𝑖

(𝑛) ≤ 𝑗 ≤

𝑀𝑖
(𝑛), let 𝐿𝑖,𝑗

(𝑛) and 𝑀𝑖,𝑗
(𝑛) be the minimal and the maximal value of 𝑘 such that 𝑑𝑖,𝑗,𝑘

(𝑛) ≠ 0, and so on.  

Let 𝑆(𝑛) be the set of all (𝑖, 𝑗, 𝑘, … ) ∈ ℤ≥0
𝑚  satisfying the set of inequalities 

𝐿(𝑛) ≤ 𝑖 ≤ 𝑀(𝑛) 

𝐿𝑖
(𝑛) ≤ 𝑗 ≤ 𝑀𝑖

(𝑛) for all 𝑖 satisfying the first inequality 

𝐿𝑖,𝑗
(𝑛) ≤ 𝑘 ≤ 𝑀𝑖,𝑗

(𝑛) for all 𝑖, 𝑗 satisfying the first two inequalities 

and so on. 

Because 𝑃𝑛(𝑥)𝑄𝑛(𝑥) = 𝑃(𝑥), we can drop all the terms 𝑐𝛼
(𝑛)
𝑥𝛼 from 𝑃𝑛(𝑥) which do not have a 

complementary term 𝑑𝑢−𝛼
(𝑛)

𝑥𝑢−𝛼 with 𝑑𝑢−𝛼
(𝑛)

> 0 in 𝑄𝑛(𝑥), as we already mentioned.  We know that 

𝑑𝑢−𝛼
(𝑛)

= 0 unless  𝑢 − 𝛼 ∈ 𝑆(𝑛).  So if one or more of the above inequalities are not satisfied, the 

term 𝑐𝛼
(𝑛)
𝑥𝛼 can be dropped from 𝑃𝑛(𝑥), resulting in our reduced polynomial 𝑃̃𝑛(𝑥).  Note that with 

this particular sequence of reduced polynomials, the final polynomial 𝑃̃0(𝑥) will consist of only one 

term: 𝑃̃0(𝑥) = 𝑐𝑢
(0)
𝑥𝑢. 

Now let’s see how the bounds can be computed in general.  To simplify the equations we’ll extend 

the above definitions and assume that 𝐿𝑖
(𝑛) = +∞ and 𝑀𝑖

(𝑛) = −∞ unless 𝐿(𝑛) ≤ 𝑖 ≤ 𝑀(𝑛), that 

𝐿𝑖,𝑗
(𝑛) = +∞ and 𝑀𝑖,𝑗

(𝑛) = −∞ unless 𝐿(𝑛) ≤ 𝑖 ≤ 𝑀(𝑛) and 𝐿𝑖
(𝑛) ≤ 𝑗 ≤ 𝑀𝑖

(𝑛), and so on. 



The case 𝑄0(𝑥) = 1 is trivial: 𝐿(0) = 𝑀(0) = 𝐿0
(0)
= 𝑀0

(0)
= 𝐿0,0

(0)
= 𝑀0,0

(0)
= ⋯ = 0.  Writing 

𝑓(𝑛) = (𝑓1(𝑛),… , 𝑓𝑚(𝑛)), the other bounds can be computed from the recurrence 

𝑄𝑛+1(𝑥) = (1 + 𝑥
𝑓(𝑛))𝑄𝑛(𝑥) = (1 + 𝑥1

𝑓1(𝑛)…𝑥𝑚
𝑓𝑚(𝑛))𝑄𝑛(𝑥) 

So we have 

𝐿(𝑛+1) = min {𝐿(𝑛), 𝐿(𝑛) + 𝑓1(𝑛)} = 𝐿
(𝑛) = 0 (using 𝑓1(𝑛) ≥ 0) 

𝑀(𝑛+1) = max {𝑀(𝑛),𝑀(𝑛) + 𝑓1(𝑛)} = 𝑀
(𝑛) + 𝑓1(𝑛) 

𝐿𝑖
(𝑛+1) = min {𝐿𝑖

(𝑛), 𝐿𝑖−𝑓1(𝑛)
(𝑛) + 𝑓2(𝑛)} 

𝑀𝑖
(𝑛+1)

= max {𝑀𝑖
(𝑛)
,𝑀𝑖−𝑓1(𝑛)

(𝑛)
+ 𝑓2(𝑛)} 

𝐿𝑖,𝑗
(𝑛+1) = min {𝐿𝑖

(𝑛), 𝐿𝑖−𝑓1(𝑛),𝑗−𝑓2(𝑛)
(𝑛) + 𝑓3(𝑛)} 

𝑀𝑖,𝑗
(𝑛+1)

= max {𝑀𝑖
(𝑛)
,𝑀𝑖−𝑓1(𝑛),𝑗−𝑓2(𝑛)

(𝑛)
+ 𝑓3(𝑛)} 

and so on.  In the next section we will show that the bounds can be computed directly for any given 𝑛 

(not by recursion over 𝑛 as in the general case described here), but keep in mind that this is not 

always possible in general. 

Application to bimagic series 
 

Let’s reconsider the problem of determining the number of bimagic series for squares of order 𝑁, 

which as we already mentioned can be found by taking 𝑆 = {0, 1, 2, … , 𝑁2 − 1}, 𝑚 = 3, 𝑓1(𝑖) = 1, 

𝑓2(𝑖) = 𝑖, 𝑓3(𝑖) = 𝑖(𝑖 − 1)/2, 𝑢1 = 𝑁, 𝑢2 = 𝜎1 and 𝑢3 = 𝜎2, where 𝜎1 = 𝑁(𝑁
2 − 1)/2 = and 

𝜎2 = 𝑁(𝑁
2 − 1)(𝑁2 − 2)/6.  With these settings, 𝑐𝑢 will be the number of bimagic series for 

squares of order 𝑁.  In this case we have, writing all variables explicitly: 

𝑃𝑛(𝑥1, 𝑥2, 𝑥3) = ∏(1 + 𝑥1𝑥2
𝑖𝑥3

𝑖(𝑖−1)/2)

𝑁2−1

𝑖=𝑛

;  𝑄𝑛(𝑥1, 𝑥2, 𝑥3) =∏(1 + 𝑥1𝑥2
𝑖𝑥3

𝑖(𝑖−1)/2)

𝑛−1

𝑖=0

 

for 𝑛 = 0, 1, … , 𝑁2.  This paragraph applies to multimagic series for cubes and hypercubes of any 

dimension as well, provided that every appearance of 𝑁2 is substituted by 𝑁3 (for cubes) or 𝑁4 (for 

hypercubes of dimension 4), and so on. 

Now it is possible to compute the bounds defined at the end of the previous section directly for any 

given 𝑛.  From the definition of 𝑄𝑛(𝑥1, 𝑥2, 𝑥3) it is clear that 𝐿(𝑛) = 0 and 𝑀(𝑛) = 𝑛.  For 𝐿𝑖
(𝑛) and 

𝑀𝑖
(𝑛) we are dealing only with monomials containing 𝑥1

𝑖, so the exponent of 𝑥2 must be a sum of 𝑖 

distinct numbers taken from {0, 1, … , 𝑛 − 1}.  If the 𝑖 smallest numbers are taken we obtain 

𝐿𝑖
(𝑛) =∑𝑗

𝑖−1

𝑗=0

=
𝑖(𝑖 − 1)

2
 

If the 𝑖 largest numbers are taken, we obtain 



𝑀𝑖
(𝑛) = ∑ 𝑗

𝑛−1

𝑗=𝑛−𝑖

=
𝑛(𝑛 − 1)

2
−
(𝑛 − 𝑖)(𝑛 − 𝑖 − 1)

2
= 𝑖(𝑛 − 1) − 𝐿𝑖

(𝑛) 

For 𝐿𝑖,𝑗
(𝑛)

 and 𝑀𝑖,𝑗
(𝑛)

 we are dealing only with monomials containing 𝑥1
𝑖𝑥2

𝑗, so the exponent of 𝑥3 must 

be the sum of the 𝑘(𝑘 − 1)/2 of 𝑖 distinct numbers 𝑘 taken from {0, 1, … , 𝑛 − 1} having sum 𝑗.  This 

time we cannot just choose the 𝑖 smallest or the 𝑖 largest numbers from the set, because of the 

additional requirement that the chosen numbers must have sum 𝑗.  But there is a very simple 

algorithm to compute all the 𝐿𝑖,𝑗
(𝑛) and 𝑀𝑖,𝑗

(𝑛) for any given combination of 𝑛 and 𝑖.  Consider an array 

of 𝑖 integer elements 𝑎[0], 𝑎[1], … , 𝑎[𝑖 − 1] satisfying 0 ≤ 𝑎[0] < 𝑎[1] < ⋯ <  𝑎[𝑖 − 1] ≤ 𝑛 − 1, 

and start by assigning the smallest possible number from the set {0, 1, … , 𝑛 − 1} to each element of 

the array, so 𝑎[0] = 0, 𝑎[1] = 1,… , 𝑎[𝑖 − 1] = 𝑖 − 1.  This initial assignment will have the smallest 

possible sum of elements (𝐿𝑖
(𝑛)

).  Now we will perform a number of steps.  In each step one of the 

numbers (and thus also their sum) will be increased by 1, but in such a way that after each step we 

still have 0 ≤ 𝑎[0] < 𝑎[1] < ⋯ <  𝑎[𝑖 − 1] ≤ 𝑛 − 1. 

In the first step we can only increase 𝑎[𝑖 − 1] (at least if 𝑖 < 𝑛, the case 𝑖 = 𝑛 is trivial), but after that 

there may be more than one element in the array that can be increased without violating the above 

constraints.  Two particular sequences of steps are of interest here.  The first sequence, which we will 

call the minimal sequence, will allow us to compute all values 𝐿𝑖,𝑗
(𝑛) for the given values of 𝑛 and 𝑖.  

The second sequence, which we will call the maximal sequence, will allow us to compute all values 

𝑀𝑖,𝑗
(𝑛) for the given values of 𝑛 and 𝑖. 

For the minimal sequence, increase the array element with the smallest possible index in each step.  

For the maximal sequence, increase the array element with the largest possible index in each step.  

Both sequences terminate when no more elements can be increased, which (for both sequences) will 

be the case when 𝑎[0] = 𝑛 − 𝑖, 𝑎[1] = 𝑛 − 𝑖 + 1,… , 𝑎[𝑖 − 1] = 𝑛 − 1.  This final assignment will 

have the largest possible sum of elements (𝑀𝑖
(𝑛)

).  Note that these rules completely define both 

sequences. 

Now for each array in the minimal sequence we can compute the two sums: 

𝑣 = ∑𝑎[𝑘]

𝑖−1

𝑘=0

;  𝑤 = ∑(𝑎
[𝑘]
2
)

𝑖−1

𝑘=0

 

We claim (and prove in the appendix) that 𝐿𝑖,𝑣
(𝑛) = 𝑤.  Since this is true after each step, and since the 

sequence starts with the smallest sum and ends with the largest sum, passing over all intermediate 

sums, we will find all 𝐿𝑖,𝑗
(𝑛).  Repeating the same for the maximal sequence allows us to find all 𝑀𝑖,𝑗

(𝑛) as 

well.  Of course the sums 𝑣 and 𝑤 can easily be computed incrementally from the result of the 

previous step.  This claim can also be stated somewhat more formally and perhaps more precisely as 

follows.  Let 𝑆𝑖
(𝑛)

 be the set of all 𝑖-tuples (𝑎0, 𝑎1, … , 𝑎𝑖−1) of integers 𝑎0, 𝑎1, … , 𝑎𝑖−1 such that 

0 ≤ 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑖−1 ≤ 𝑛 − 1, and define a partial order ⪯ between the elements of 𝑆𝑖
(𝑛)

 such 

that 



(𝑎0, 𝑎1, … , 𝑎𝑖−1) ⪯ (𝑏0, 𝑏1, … , 𝑏𝑖−1) ⇔∑𝑎[𝑘]

𝑖−1

𝑘=0

=∑𝑏[𝑘]

𝑖−1

𝑘=0

∧∑ (
𝑎[𝑘]
2
)

𝑖−1

𝑘=0

≤∑(
𝑏[𝑘]
2
)

𝑖−1

𝑘=0

 

Then we claim that the arrays (𝑖-tuples) in the minimal sequence are the minimal elements of 

(𝑆𝑖
(𝑛)
, ⪯), and similarly that the arrays (𝑖-tuples) in the maximal sequence are the maximal elements 

of (𝑆𝑖
(𝑛)
, ⪯). 

For example, with 𝑁 = 4 (note really important here), 𝑛 = 10 and 𝑖 = 5, we have 𝐿(10) = 0, 

𝑀(10) = 10, 𝐿5
(10) = 10, 𝑀5

(10) = 35, and the minimal sequence goes like this (from top to bottom): 

𝑎[0] 𝑎[1] 𝑎[2] 𝑎[3] 𝑎[4] 𝑣 𝑤 
0 1 2 3 4 10 10 
0 1 2 3 5 11 14 
0 1 2 4 5 12 17 
0 1 3 4 5 13 19 
… … … … … … … 
1 3 4 5 6 19 34 
2 3 4 5 6 20 35 
… … … … … … … 
5 6 7 8 9 35 110 

 

The corresponding maximal sequence goes like this (from top to bottom): 

𝑎[0] 𝑎[1] 𝑎[2] 𝑎[3] 𝑎[4] 𝑣 𝑤 
0 1 2 3 4 10 10 
0 1 2 3 5 11 14 
0 1 2 3 6 12 19 
0 1 2 3 7 13 25 
… … … … … … … 
0 1 4 8 9 22 70 
0 1 5 8 9 23 74 
… … … … … … … 
5 6 7 8 9 35 110 

 

For example, we can read from the last columns that 𝐿5,12
(10) = 17 and 𝑀5,12

(10) = 19, implying that for 

any combination of 5 distinct numbers chosen from {0, … ,9} with sum 𝑣 = 12 we have 17 ≤ 𝑤 ≤

19.  Note that the sum 𝑣 ranges over all values such that 𝐿5
(10) ≤ 𝑣 ≤ 𝑀5

(10) as required. 

Algorithm (outline) 
 

In this section we slightly refine the basic algorithm.  To simplify the discussion we’ll make 

abstraction of the minor complication that we’ll actually work with reduced polynomials 𝑃̃𝑛(𝑥) 

instead of 𝑃𝑛(𝑥).  So the basic idea is to start from the polynomial 𝑃𝑀(𝑥) = 1 (where 𝑀 = 𝑁2 for 

magic squares, 𝑀 = 𝑁3 for magic cubes, and so on), and in each step to compute 𝑃𝑛(𝑥) from 

𝑃𝑛+1(𝑥) using: 



𝑃𝑛(𝑥) = (1 + 𝑥
(1,𝑛,𝑛(𝑛−1)/2))𝑃𝑛+1(𝑥) 

Because the larger polynomials 𝑃𝑛(𝑥) are too large to be stored in memory, we will represent each 

polynomial 𝑃𝑛(𝑥) by a file.  In each step we can read the file representing 𝑃𝑛+1(𝑥) and write the file 

representing 𝑃𝑛(𝑥).  After successfully completing each step, the file representing 𝑃𝑛+1(𝑥) can be 

deleted. 

The general operation of a single step is illustrated in the following diagram, which shows the 

positions of the two input terms that have to be read in order to produce the next output term (this 

example applies to bimagic series for squares of order 𝑁 = 6, with 𝑛 = 10).  The two arrows in the 

left column show the position of two “input heads” moving sequentially through the same input file, 

in synch with the position of the “output head” represented by the arrow in the right column.  Note 

that this diagram is a simplification, because it makes abstraction of the input and output buffers, 

which may contain thousands or even millions of terms. 

 𝑃11(𝑥)      𝑃10(𝑥)  
 ⦙      ⦙  
𝐼2 → 5𝑥(4,93,1144) ∗ 𝑥(1,10,45) = 5𝑥(5,103,1189) 

 

 

 

} → 
⦙  

 ⦙     7𝑥(5,103,1189) → 𝑂𝑈𝑇 
𝐼1 → 2𝑥(5,103,1189) ∗ 1 = 2𝑥(5,103,1189) ⦙  

 ⦙     ⦙  
 

Rather than performing one multiplication per step, it is more efficient to combine two subsequent 

multiplications.  We can do this as follows: if 𝑁 is even (so also 𝑀 is even), start from 𝑃𝑀(𝑥) = 1 as 

before, and if 𝑁 is odd (so also 𝑀 is odd), start from 𝑃𝑀−1(𝑥).  In each step we now compute 𝑃𝑛(𝑥) 

from 𝑃𝑛+2(𝑥), where 𝑛 will always be even, using 

𝑃𝑛(𝑥) = (1 + 𝑥
(1,𝑛,𝑛(𝑛−1)/2))(1 + 𝑥(1,𝑛+1,𝑛(𝑛+1)/2))𝑃𝑛+2(𝑥) 

= (1 + 𝑥(1,𝑛,𝑛(𝑛−1)/2) + 𝑥(1,𝑛+1,𝑛(𝑛+1)/2) + 𝑥(2,2𝑛+1,𝑛
2))𝑃𝑛+2(𝑥) 

This is illustrated in the following diagram, which shows the positions of the four input terms that 

have to be read in order to produce the next output term (also this example applies to bimagic series 

for squares of order 𝑁 = 6, with 𝑛 = 10).  Now each of the arrows in the left column shows the 

position of one of the four “input heads” moving sequentially through the same input file, in synch 

with the position of the “output head” represented by the arrow in the right column. 

 𝑃12(𝑥)      𝑃10(𝑥)  
 ⦙      ⦙  
𝐼4 → 𝑥(3,82,1089) ∗ 𝑥(2,21,100) = 𝑥(5,103,1189) 

 

 

 

 

 

 }
  
 

  
 

→ 

⦙  
 ⦙     ⦙  
𝐼3 → 𝑥(4,92,1134) ∗ 𝑥(1,11,55) = 𝑥(5,103,1189) ⦙  

 ⦙     7𝑥(5,103,1189) → 𝑂𝑈𝑇 
𝐼2 → 4𝑥(4,93,1144) ∗ 𝑥(1,10,45) = 4𝑥(5,103,1189) ⦙  

 ⦙     ⦙  
𝐼1 → 𝑥(5,103,1189) ∗ 1 = 𝑥(5,103,1189) ⦙  

 ⦙      ⦙  
 



Combining more than two multiplications does not help because the number of input heads/buffers 

and hence the number of reads performed doubles with each additional factor (the number of reads 

is equal to the number of terms in the pre-factor), whereas the number of steps does not halve any 

more. 

Representation of the polynomials 
 

An important consideration is how to represent the terms of the polynomials 𝑃̃𝑛(𝑥).  Perhaps the 

main criterion for our purpose is the “compactness” of the representation (the average number of 

bytes per term).  We’ll assume without loss of generality that there are three variables.  As a first 

attempt we could start from 

𝑃̃𝑛(𝑥) =∑𝑐̃𝑢
(𝑛)
𝑥𝑢

𝑢

= ∑ 𝑐̃𝑢1,𝑢2,𝑢3
(𝑛)

𝑥1
𝑢1𝑥2

𝑢2𝑥3
𝑢3

𝑢1,𝑢2,𝑢3

 

and represent this sum as a lexicographically ordered list of all 4-tuples (𝑢1, 𝑢2, 𝑢3, 𝑐̃𝑢1,𝑢2,𝑢3
(𝑛) ) such 

that 𝑐̃𝑢1,𝑢2,𝑢3
(𝑛)

≠ 0.  To compress this list, for every element (𝑢1, 𝑢2, 𝑢3, 𝑐̃𝑢1,𝑢2,𝑢3
(𝑛) ) after the first, 

consider the previous element (𝑣1, 𝑣2, 𝑣3, 𝑐̃𝑣1,𝑣2,𝑣3
(𝑛) ).  Then, if 𝑢1 = 𝑣1, drop the first component 𝑢1, 

reducing the element to a triple.  Next, if also 𝑢2 = 𝑣2, drop the second component 𝑢2 as well, 

further reducing the element to a pair.  And finally, if also 𝑢3 = 𝑣3 + 1, drop the third component 𝑢3 

as well, leaving only the coefficient 𝑐̌𝑢1,𝑢2,𝑢3
(𝑛)

.  Especially if 𝑃̃𝑛(𝑥) has many terms, it will almost always 

be the case that whenever 𝑐̃𝑢1,𝑢2,𝑢3
(𝑛)

≠ 0, then also 𝑐̃𝑢1,𝑢2,𝑢3−1
(𝑛)

≠ 0.  This essentially reduces the 

representation to a long list of coefficients, with only a very small overhead for the exponents. 

Lee Morgenstern’s algorithm 
 

The basic algorithm described in this note is in fact quite similar to the algorithm developed by Lee 

Morgenstern[3], although his algorithm was derived without using polynomials.  His program was 

used to compute the largest known exact results for bimagic series.  It can be shown that his lists 

𝐿[𝑟][𝑠] can be interpreted as representations of certain polynomials related to polynomials defined 

in this note, and that his idea of truncating these lists is equivalent to our idea of working with 

reduced polynomials 𝑃̃𝑛(𝑥).  Because his program keeps all data in memory it is faster, but fails to 

work for larger values of 𝑁. 

New results for bimagic series for squares and cubes 
 

With the ingredients described in this note I wrote my own (C++) program to compute the exact 

number of bimagic series for squares and cubes of order 𝑁.  The program confirms the known results 

for squares (𝑁 ≤ 28) and cubes (𝑁 ≤ 12).  Of course I also computed some new results: 



- exact number of bimagic series for squares of order 𝑁 = 29: 

397017067970073855910942668942599683652058914 

- exact number of bimagic series for squares of order 𝑁 = 30: 

67063309991205148544594890672812817873237628826 

- exact number of bimagic series for cubes of order 𝑁 = 13: 

450285458654002877929960 

The same program can be used for larger values of 𝑁 (without modifications), and it can be adapted 

to handle bimagic series for hypercubes as well (by changing one simple expression in the beginning 

of the program). 

The new results are consistent with the known estimates found by Michael Quist[4] (see the tables 

below).  His formula for squares is 

𝐸𝑠𝑡1(𝑁) =
6

𝜋3/2
√
30

𝑒
∙
(𝑁𝑒)𝑁

𝑁15/2
(1 +

1787

2940
𝑁−1) 

The estimates get better if the next term is added to his asymptotic series.  Adding the next term (see 

the note(*) at the end of this section) results in the following approximation: 

𝐸𝑠𝑡2(𝑁) =
6

𝜋3/2
√
30

𝑒
∙
(𝑁𝑒)𝑁

𝑁15/2
(1 +

1787

2940
𝑁−1 −

11522051

70630560
𝑁−2) 

The results for squares are listed in the following table, where 𝐸𝑥(𝑁) is the exact result (rounded to 

7 digits), and the relative errors of the two estimates (𝑘 = 1 and 𝑘 = 2) are defined as 

𝐸𝑟𝑟𝑘(𝑁) = (𝐸𝑠𝑡𝑘(𝑁) − 𝐸𝑥(𝑁))/𝐸𝑥(𝑁) 

𝑁 𝐸𝑥(𝑁) 𝐸𝑠𝑡1(𝑁) 𝐸𝑟𝑟1(𝑁) 𝐸𝑠𝑡2(𝑁) 𝐸𝑟𝑟2(𝑁) 
29 3.970171 ∙ 1044 3.971414 ∙ 1044 +0.0313% 3.970660 ∙ 1044 +0.0123% 
30 6.706331 ∙ 1046 6.708319 ∙ 1046 +0.0296% 6.707127 ∙ 1046 +0.0119% 

 

Adding the next term should improve the estimates for larger values of 𝑁 as well. 

Quist’s formula for cubes is 

𝐸𝑠𝑡1(𝑁) =
6√30

𝜋3/2
∙
(𝑁2𝑒)𝑁

𝑁21/2
(1 −

1201

980
𝑁−1) 

Again, the estimate gets better if the next term is added to his asymptotic series, resulting in the 

following approximation: 

𝐸𝑠𝑡2(𝑁) =
6√30

𝜋3/2
∙
(𝑁2𝑒)𝑁

𝑁21/2
(1 −

1201

980
𝑁−1 +

16333813

7847840
𝑁−2) 



The following table compares the new result for cubes with the two estimates, where 𝐸𝑥(𝑁) is again 

the exact result (rounded to 7 digits), and the relative errors of the two estimates are defined as 

above. 

𝑁 𝐸𝑥(𝑁) 𝐸𝑠𝑡1(𝑁) 𝐸𝑟𝑟1(𝑁) 𝐸𝑠𝑡2(𝑁) 𝐸𝑟𝑟2(𝑁) 
13 4.502855 ∙ 1023 4.364515 ∙ 1023 −3.072% 4.423861 ∙ 1023 −1.754% 

 

The following graph shows the number of terms of 𝑃̃𝑛(𝑥) in function of 𝑛, for the case of bimagic 

series for cubes of order 𝑁 = 13: 

 

Perhaps more interesting is the graph of the first differences: 

 

I don’t have an explanation for this rather complex graph.  It could be interesting to examine how it 

changes for different values of 𝑁 and for different dimensions.  The graph of the second differences 

(not shown here) reveals even more irregularities at a smaller scale. 

(*) The computation of the extra terms in the formulas for 𝐸𝑠𝑡2(𝑁) is too complicated to describe in 

this note (I found a way to compute any number of terms of the non-Gaussian factor defined in 

Michael Quist’s paper, without computing all the associated diagrams).  Currently I only have 

detailed notes for ordinary magic series.  For bimagic series I just have plain text draft notes in Dutch 

containing the derivations of all the required formulas, but if anyone is interested I could spend some 

time to make them readable...   
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Appendix: proofs related to the minimal and maximal sequences 
 

Here we will prove that if for any array 𝑎[0], 𝑎[1], … , 𝑎[𝑖 − 1] in the minimal sequence we compute 

𝑣 = ∑𝑎[𝑘]

𝑖−1

𝑘=0

;  𝑤 = ∑(
𝑎[𝑘]
2
)

𝑖−1

𝑘=0

 

then it is always the case that 𝐿𝑖,𝑣
(𝑛)

= 𝑤, in other words, that this array has the smallest 𝑤 of all 

possible arrays of 𝑖 strictly increasing numbers taken from {0, 1, … , 𝑛 − 1} having sum 𝑣.   We will 

also prove that if we do the same for the maximal sequence, then it is always the case that 𝑀𝑖,𝑣
(𝑛) =

𝑤, in other words, that this array has the largest 𝑤 of all possible arrays of 𝑖 strictly increasing 

numbers taken from {0, 1, … , 𝑛 − 1} having sum 𝑣. 

Let’s start with the (maybe somewhat sketchy) proof for the minimal sequence.  Because of the way 

in which the minimal sequence is constructed, it is immediately clear that each array in the sequence 

has a very specific form: either the array consists of 𝑖 consecutive integers (the initial and the final 

array in the sequence are examples of this case), or the array consists of two blocks of consecutive 

integers, with a gap of length 1 between them.  As an example, take the table of the minimal 

sequence from our previous example with 𝑁 = 4, 𝑛 = 10 and 𝑖 = 5.  One of the arrays in this 

sequence is 𝑎[0] = 0, 𝑎[1] = 1, 𝑎[2] = 3, 𝑎[3] = 4, 𝑎[4] = 5.  As shown in the diagram below, the 

first two elements of this array form a first block (containing the consecutive integers 0 and 1), and 

the other three elements form the second block (containing the consecutive integers 3, 4 and 5).  

The gap between the two blocks has length 1 as required (only the number 2 is missing). 

0 1 2 3 4 5 6 7 8 9 
𝑎[0] 𝑎[1]  𝑎[2] 𝑎[3] 𝑎[4]  

block gap block gap 
 

It is also clear that every strictly increasing array of integers taken from {0, 1, … , 𝑛 − 1} with this 

form will appear in the minimal sequence. 

Now we must prove that every strictly increasing array of integers taken from {0, 1, … , 𝑛 − 1} with a 

given sum 𝑣 has a larger 𝑤 than the (unique) array with the same sum 𝑣 from the minimal sequence.  

We do this by transforming the initial array in a finite number of reduction steps, where each step 

keeps the sum 𝑣 constant, but strictly decreases 𝑤, and such that after the final step we always 

obtain that unique array with the same sum 𝑣 from the minimal sequence.  If we can prove that such 

a reduction is always possible, the proof is complete. 

The reduction step can be defined as follows (assuming that the array 𝑎 is not already in the required 

form, after which no more steps are needed).  First choose two array elements 𝑎[𝑟] and 𝑎[𝑠], with 

𝑟 + 1 < 𝑠 − 1 and 𝑎[𝑟] + 1 < 𝑎[𝑟 + 1] < 𝑎[𝑠 − 1] < 𝑎[𝑠] − 1.  This is always possible: choose two 

consecutive blocks with a gap of length greater than 1 between them (which is always possible if the 

array 𝑎 is not already in the required form), and take the largest element of the first block as 𝑎[𝑟], 

and the smallest element of the second block as 𝑎[𝑠]).  Then, add 1 to the array element 𝑎[𝑟] and 

subtract 1 from the array element 𝑎[𝑠].  The resulting array 𝑎′ will still be a strictly increasing array of 



integers taken from {0, 1, … , 𝑛 − 1} with the same sum 𝑣.  We still have to show that each step 

strictly decreases 𝑤: 

𝑤′ −𝑤 =∑[(
𝑎′[𝑘]
2
) − (𝑎

[𝑘]
2
)]

𝑖−1

𝑘=0

= (𝑎
′[𝑟]
2
) − (𝑎

[𝑟]
2
) + (𝑎

′[𝑠]
2
) − (𝑎

[𝑠]
2
)

= (𝑎
[𝑟] + 1
2

) − (𝑎
[𝑟]
2
) + (𝑎

[𝑠] − 1
2

) − (𝑎
[𝑠]
2
) = 𝑎[𝑟] − (𝑎[𝑠] − 1) < 0 

This completes the proof for the minimal sequence. 

The proof for the maximal sequence is very similar.  Because of the way in which the maximal 

sequence is constructed, it is immediately clear that each array in the sequence has the following 

form: either the array consists of 𝑖 consecutive integers (the initial and the final array in the sequence 

are examples of this case), or the array contains a single gap, or exactly two gaps with a single block 

of length 1 between them.  As an example, consider the maximal sequence from the previous 

example with 𝑁 = 4, 𝑛 = 10 and 𝑖 = 5.  One of the arrays in this sequence is 𝑎[0] = 0, 𝑎[1] =

1, 𝑎[2] = 4, 𝑎[3] = 8, 𝑎[4] = 9.  As shown in the diagram below, there are exactly two gaps in this 

array, the first one between the elements 𝑎[1] and 𝑎[2] (the numbers 2 and 3 are missing), and the 

other one between the elements 𝑎[2] and 𝑎[3] (the numbers 5, 6 and 7 are missing), and there is a 

single block between the gaps (containing the number 4), with length 1 as required. 

0 1 2 3 4 5 6 7 8 9 
𝑎[0] 𝑎[1]  𝑎[2]  𝑎[3] 𝑎[4] 

block gap block gap block 
 

It is also clear that every strictly increasing array of integers taken from {0, 1, … , 𝑛 − 1} with this 

form will appear in the maximal sequence. 

Now we must prove that every strictly increasing array of integers taken from {0, 1, … , 𝑛 − 1} with a 

given sum 𝑣 has a smaller 𝑤 than the (unique) array with the same sum 𝑣 from the maximal 

sequence.  We do this by transforming the initial array in a finite number of reduction steps, where 

each step keeps the sum 𝑣 constant, but strictly increases 𝑤, and such that after the final step we 

always obtain that unique array with the same sum 𝑣 from the maximal sequence.  If we can prove 

that such a reduction is always possible, the proof is complete. 

The reduction step can now be defined as follows (assuming that the array 𝑎 is not already in the 

required form, after which no more steps are needed).  First choose two array elements 𝑎[𝑟] and 

𝑎[𝑠], with 𝑟 < 𝑠 and 𝑎[𝑟] − 1 > 𝑎[𝑟 − 1] (or 𝑎[𝑟] > 0 if 𝑟 = 0) and 𝑎[𝑠] + 1 < 𝑎[𝑠 + 1] (or 

𝑎[𝑠] < 𝑛 − 1 if 𝑠 = 𝑖 − 1).  This is always possible: choose one or more blocks not containing 0 or 

𝑛 − 1 with total length greater than 1 (which is always possible if the array 𝑎 is not already in the 

required form), and take the smallest element of these blocks as 𝑎[𝑟], and the largest element as 

𝑎[𝑠].  Then, subtract 1 from the array element 𝑎[𝑟] and add 1 to the array element 𝑎[𝑠].  The 

resulting array 𝑎′ will still be a strictly increasing array of integers taken from {0, 1, … , 𝑛 − 1} with the 

same sum 𝑣.  We still have to show that each step strictly increases 𝑤: 



𝑤′ −𝑤 =∑ [(
𝑎′[𝑘]
2
) − (

𝑎[𝑘]
2
)]

𝑖−1

𝑘=0

= (
𝑎′[𝑟]
2
) − (

𝑎[𝑟]
2
) + (

𝑎′[𝑠]
2
) − (

𝑎[𝑠]
2
)

= (
𝑎[𝑟] − 1

2
) − (

𝑎[𝑟]
2
) + (

𝑎[𝑠] + 1
2

) − (
𝑎[𝑠]
2
) = −(𝑎[𝑟] − 1) + 𝑎[𝑠] > 0 

This completes the proof for the maximal sequence. 
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