Das kleinstmögliche pandiagonale Sudoku
In ihrem interessanten Artikel "Constructing pandiagonal magic squares of arbitrarily large size" (Mathematics Today, February 2006), schreibt Kathleen Ollerenshaw auf Seite 25:
"Es ist wahrscheinlich dass es Latin pandiagonal magisches Sudoku gibt, aber ich habe keinen Versuch gemacht das zu überprüfen".
Ihre Annahme ist richtig, kein 9x9 Sudoku kann pandiagonal sein. In der April 2006 Ausgabe, wurde mein Brief zu diesem Thema veröffentlicht, direkt nach dem zweiten Teil von Ollerenshaw's Artikel.
|
2 |
25 |
18 |
11 |
9 |
3 |
21 |
19 |
12 |
10 |
4 |
22 |
20 |
13 |
6 |
5 |
23 |
16 |
14 |
7 |
1 |
24 |
17 |
15 |
8 |
14 |
7 |
5 |
23 |
16 |
15 |
8 |
1 |
24 |
17 |
11 |
9 |
2 |
25 |
18 |
12 |
10 |
3 |
21 |
19 |
13 |
6 |
4 |
22 |
20 |
21 |
19 |
12 |
10 |
3 |
22 |
20 |
13 |
6 |
4 |
23 |
16 |
14 |
7 |
5 |
24 |
17 |
15 |
8 |
1 |
25 |
18 |
11 |
9 |
2 |
8 |
1 |
24 |
17 |
15 |
9 |
2 |
25 |
18 |
11 |
10 |
3 |
21 |
19 |
12 |
6 |
4 |
22 |
20 |
13 |
7 |
5 |
23 |
16 |
14 |
20 |
13 |
6 |
4 |
22 |
16 |
14 |
7 |
5 |
23 |
17 |
15 |
8 |
1 |
24 |
18 |
11 |
9 |
2 |
25 |
19 |
12 |
10 |
3 |
21 |
4 |
22 |
20 |
13 |
6 |
5 |
23 |
16 |
14 |
7 |
1 |
24 |
17 |
15 |
8 |
2 |
25 |
18 |
11 |
9 |
3 |
21 |
19 |
12 |
10 |
11 |
9 |
2 |
25 |
18 |
12 |
10 |
3 |
21 |
19 |
13 |
6 |
4 |
22 |
20 |
14 |
7 |
5 |
23 |
16 |
15 |
8 |
1 |
24 |
17 |
23 |
16 |
14 |
7 |
5 |
24 |
17 |
15 |
8 |
1 |
25 |
18 |
11 |
9 |
2 |
21 |
19 |
12 |
10 |
3 |
22 |
20 |
13 |
6 |
4 |
10 |
3 |
21 |
19 |
12 |
6 |
4 |
22 |
20 |
13 |
7 |
5 |
23 |
16 |
14 |
8 |
1 |
24 |
17 |
15 |
9 |
2 |
25 |
18 |
11 |
17 |
15 |
8 |
1 |
24 |
18 |
11 |
9 |
2 |
25 |
19 |
12 |
10 |
3 |
21 |
20 |
13 |
6 |
4 |
22 |
16 |
14 |
7 |
5 |
23 |
1 |
24 |
17 |
15 |
8 |
2 |
25 |
18 |
11 |
9 |
3 |
21 |
19 |
12 |
10 |
4 |
22 |
20 |
13 |
6 |
5 |
23 |
16 |
14 |
7 |
13 |
6 |
4 |
22 |
20 |
14 |
7 |
5 |
23 |
16 |
15 |
8 |
1 |
24 |
17 |
11 |
9 |
2 |
25 |
18 |
12 |
10 |
3 |
21 |
19 |
25 |
18 |
11 |
9 |
2 |
21 |
19 |
12 |
10 |
3 |
22 |
20 |
13 |
6 |
4 |
23 |
16 |
14 |
7 |
5 |
24 |
17 |
15 |
8 |
1 |
7 |
5 |
23 |
16 |
14 |
8 |
1 |
24 |
17 |
15 |
9 |
2 |
25 |
18 |
11 |
10 |
3 |
21 |
19 |
12 |
6 |
4 |
22 |
20 |
13 |
19 |
12 |
10 |
3 |
21 |
20 |
13 |
6 |
4 |
22 |
16 |
14 |
7 |
5 |
23 |
17 |
15 |
8 |
1 |
24 |
18 |
11 |
9 |
2 |
25 |
3 |
21 |
19 |
12 |
10 |
4 |
22 |
20 |
13 |
6 |
5 |
23 |
16 |
14 |
7 |
1 |
24 |
17 |
15 |
8 |
2 |
25 |
18 |
11 |
9 |
15 |
8 |
1 |
24 |
17 |
11 |
9 |
2 |
25 |
18 |
12 |
10 |
3 |
21 |
19 |
13 |
6 |
4 |
22 |
20 |
14 |
7 |
5 |
23 |
16 |
22 |
20 |
13 |
6 |
4 |
23 |
16 |
14 |
7 |
5 |
24 |
17 |
15 |
8 |
1 |
25 |
18 |
11 |
9 |
2 |
21 |
19 |
12 |
10 |
3 |
9 |
2 |
25 |
18 |
11 |
10 |
3 |
21 |
19 |
12 |
6 |
4 |
22 |
20 |
13 |
7 |
5 |
23 |
16 |
14 |
8 |
1 |
24 |
17 |
15 |
16 |
14 |
7 |
5 |
23 |
17 |
15 |
8 |
1 |
24 |
18 |
11 |
9 |
2 |
25 |
19 |
12 |
10 |
3 |
21 |
20 |
13 |
6 |
4 |
22 |
5 |
23 |
16 |
14 |
7 |
1 |
24 |
17 |
15 |
8 |
2 |
25 |
18 |
11 |
9 |
3 |
21 |
19 |
12 |
10 |
4 |
22 |
20 |
13 |
6 |
12 |
10 |
3 |
21 |
19 |
13 |
6 |
4 |
22 |
20 |
14 |
7 |
5 |
23 |
16 |
15 |
8 |
1 |
24 |
17 |
11 |
9 |
2 |
25 |
18 |
24 |
17 |
15 |
8 |
1 |
25 |
18 |
11 |
9 |
2 |
21 |
19 |
12 |
10 |
3 |
22 |
20 |
13 |
6 |
4 |
23 |
16 |
14 |
7 |
5 |
6 |
4 |
22 |
20 |
13 |
7 |
5 |
23 |
16 |
14 |
8 |
1 |
24 |
17 |
15 |
9 |
2 |
25 |
18 |
11 |
10 |
3 |
21 |
19 |
12 |
18 |
11 |
9 |
2 |
25 |
19 |
12 |
10 |
3 |
21 |
20 |
13 |
6 |
4 |
22 |
16 |
14 |
7 |
5 |
23 |
17 |
15 |
8 |
1 |
24 |
In Mathematics Today, Vol 49, 2013, pages 86-87, Ronald P. Nordgren, Brown School of Engineering, Rice University (USA), presents "systematic methods of constructing pandiagonal sudoku squares of order k*k and Knut Vik sudoku squares of order k*k not divisible by 2 or 3". Pandiagonal magic squares are constructed from these squares.
A reprint of this paper, including an unpublished appendix with additional examples, is available at http://arxiv.org/abs/1307.1034
Zurück zur Homepage http://www.multimagie.com