A Search for a Magic Hourglass

Duncan A. Buell
Department of Computer Science and Engineering
University of South Carolina
Columbia, South Carolina 20209
buell@cse.sc.edu

July 1, 2004

Abstract

An open problem mostly of a recreational nature is to find a 3 x 3
magic square all of whose entries are themselves square integers, or,
failing in that search, to find a magic “hourglass” all of whose entries
are square integers. We describe an unsuccessful search for such an
hourglass.

1 Introduction

An old problem largely of a recreational nature is to find a 3 x 3 magic square
all of whose entries are squares of integers. A subproblem is to find a magic

“hourglass”
a—b a+b+c a—c

a (1)

at+c a—b—c a+b

all of whose entries are squares of integers.
We describe below an unsuccessful search for such an hourglass, and we
announce the following computational result.

Theorem 1.1. There is no magic hourglass for which a is less than 25-10%*.



A Magic Hourglass Page 2

2 The Parameterization, and a Computation
The first relatively easy parameterization is to note that we must have
a=(m’*+n*)? = (r*+5) = (v +v?)? (2)

in integer variables m,n,r, s, u, v, and that with this parameterization and
the assignment
b = dmn(m?* — n?)
¢ =4rs(r’ — s%) (3)
d = duv(u® — v?)

we will have satisfied all the requirements for

a—b a—d a—c
a
a+c a+d a+bd

to be a magic hourglass as desired except for the requirement that the two
horizontals sum to 3a, that is, that

b+c=—d. (4)

Our search for a magic hourglass, therefore, begins by finding all values
of A = y/a that can be written in three or more distinct ways as a sum of
squares. We then try a minimum set of permutations of S = {m,n,r, s, u, v},
with signs, in an attempt to satisfy (4).

The code for the search was written in C and run under MPI, in the
background at very low priority, on multiple processors of the SGI Challenge
computer at CCS through most of calendar year 1998. Up through A =
5+ 10", however, no solution to (1) was found.

In a computation such as this, when one is searching the proverbial
haystack for a needle, it is easy for a null result to be obtained incorrectly
through an error in programming. To guard against this, the program must
be written not only to be self-checking, but also so as to produce some sort of
output that can be examined and tested for correctness. Our computation,
therefore, proceeded in three stages.

First we enumerated the sums of squares in a given block of integers.
Those integers A with at least three such representations were kept active.
Next, we tested the solutions S to (2) testing (4) not as an equation but as a



A Magic Hourglass Page 3

congruence modulo 2'6. This pared down the list to be tested to a manageable
size and could be done using only single-precision (64-bit) arithmetic, but by
only testing the low order bits we avoided getting an erroneous null result.
The survivors of this second filter were then tested using gmp multiprecise
arithmetic, again not by testing (4) for equality but by testing for the highest
power of 2 satisfied by the solution S. Various tests along the way kept counts
of the number of survivors of the three filtering steps so that the computation
could proceed almost without supervision but nonetheless be robust enough
to generate error messages in the event of power failures, disk partitions filled
to capacity, and the like.
For example, we find that

1193162282546 = 1043815% + 321889% =1066211% + 2373952 =1076911% + 1828252
2727247005314 = 14567052 + 7779832 = 16512672 + 237552 =1643875% + 1578672
2726033914369 =1245313% + 10840802 =1643860% + 154137 =1613863% + 348540>

and for the first example we may take
{m,n,r, s,u,v} = {1043815, —321889, 1066211, 237395, 1076911, 182825}

to obtain
b = —1325070315895532182090560

¢ = 1093903960779403233924480
d = 887021653181324514532800

We then find that
b+ c+ d = 655855298065195566366720

which is zero modulo 2% but not modulo 2*7. A similar congruence holds
modulo 2% but not 2*7 for the other two cases above, using

{m,n,r, s,u,v} = {1456705, 777983, 1651267, 23755, 1643875, —157867}
and

{m,n,r,s,u,v} = {1245313, —1084080, 1643860, 154137, 1613863, 348540}



A Magic Hourglass Page 4

These were the three examples found for which (4), viewed as a congruence,
was solvable for the highest power of 2.

For completeness, we also give a table of the number of solutions to (4)
as a congruence, for all powers of 2 greater than or equal to 30.

Power Number of Solutions

30 107491
31 53616
32 26918
33 13315
34 6768
35 3342
36 1699
37 825
38 428
39 219
40 94
41 62
42 22
43 18
44 9
45 Y

46 3



